Angiotensin II-Induced Mitochondrial Nox4 Is a Major Endogenous Source of Oxidative Stress in Kidney Tubular Cells
نویسندگان
چکیده
Angiotensin II (Ang II)-induced activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase leads to increased production of reactive oxygen species (ROS), an important intracellular second messenger in renal disease. Recent findings suggest that Ang II induces mitochondrial depolarization and further amplifies mitochondrial generation of ROS. We examined the hypothesis that ROS injury mediated by Ang II-induced mitochondrial Nox4 plays a pivotal role in mitochondrial dysfunction in tubular cells and is related to cell survival. In addition, we assessed whether angiotensin (1-7) peptide (Ang-(1-7)) was able to counteract Ang II-induced ROS-mediated cellular injury. Cultured NRK-52E cells were stimulated with 10(-6) M Ang II for 24 h with or without Ang-(1-7) or apocynin. Ang II simulated mitochondrial Nox4 and resulted in the abrupt production of mitochondrial superoxide (O(2) (-)) and hydrogen peroxide (H(2)O(2)). Ang II also induced depolarization of the mitochondrial membrane potential, and cytosolic secretion of cytochrome C and apoptosis-inducing factor (AIF). Ang-(1-7) attenuated Ang II-induced mitochondrial Nox4 expression and apoptosis, and its effect was comparable to that of the NAD(P)H oxidase inhibitor. These findings suggest that Ang II-induced activation of mitochondrial Nox4 is an important endogenous source of ROS, and is related to cell survival. The ACE2-Ang-(1-7)-Mas receptor axis should be investigated further as a novel target of Ang II-mediated ROS injury.
منابع مشابه
Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress.
Tubular epithelial loss has been shown to be responsible for the formation of atubular glomeruli leading to nephron decomposition and interstitial fibrosis in obstructive uropathy. Cells undergoing apoptosis and autophagic cell death play an important role in this process, yet the mechanisms are not fully understood. In this study, we aimed to inv...
متن کاملTherapeutic and protective effects of montelukast against doxorubicin-induced acute kidney damage in rats
Objective(s): The current study was designed to investigate the therapeutic and protective effects of montelukast (ML) against doxorubicin (DOX)-induced acute kidney damage in rats.Materials and Methods: Thirty-five Wistar albino female rats were randomly divided into 5 groups as follows: Group I: Control; Group II: Control+ML; Group III: DOX; Group IV: DOX+ML; Group V: ML+DOX. At the end of th...
متن کاملIntegrative Physiology Nox4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase
Rationale: The function of Nox4, a source of vascular H2O2, is unknown. Other Nox proteins were identified as mediators of endothelial dysfunction. Objective: We determined the function of Nox4 in situations of increased stress induced by ischemia or angiotensin II with global and tamoxifen-inducible Nox4 / mice. Methods and Results: Nox4 was highly expressed in the endothelium and contributed ...
متن کاملNox4 is a protective reactive oxygen species generating vascular NADPH oxidase.
RATIONALE The function of Nox4, a source of vascular H(2)O(2), is unknown. Other Nox proteins were identified as mediators of endothelial dysfunction. OBJECTIVE We determined the function of Nox4 in situations of increased stress induced by ischemia or angiotensin II with global and tamoxifen-inducible Nox4(-/-) mice. METHODS AND RESULTS Nox4 was highly expressed in the endothelium and cont...
متن کاملOverexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo
The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We r...
متن کامل